
www.manaraa.com

Policy Framework for Autonomic Data Management

Manish Bhide, Ajay Gupta, Mukul Joshi, Mukesh Mohania, Shree Raman
IBM India Research lab,

Block-1 IIT Delhi, Hauz Khas, New Delhi - 110016
{abmanish,agupta,mukuljos,mkmukesh,shreeraman}@in.ibm.com

Abstract

The popularity of e-Business has lead to an
exponential and unstructured growth in the
applications space coupled with an increase in the
database size. This has led to an increase in the
complexity of the database management task.
Moreover, organizations are increasingly concerned
about the privacy of data. Thus, managing such large
ever growing and privacy-preserving database is
complex and time-consuming task. In this paper we
describe a policy-based framework for autonomic
database management using Business Objects. Our
system automatically manages data based on events.

1. Introduction

In most of the organizations, the size of the
distributed information repositories is increasing at the
rate of 40% every year due to an increase in Internet
based transactions. Managing such large distributed
information repositories is a complex and time-
consuming task, which is solved by hiring skilled
database administrators. Adding to this complexity is
the fact that these distributed information repositories
are administered by multiple administrators who are
responsible for maintaining different applications that
are sharing the same database. Such administration of
the system and database can lead to conflicting actions
unless the actions are bound by constraints/ policies,
which can avoid conflicts [1].

In this paper, we discuss a policy-based framework
for autonomic database management that provides an
efficient and easy-to-use system, which enables the
policy makers to directly define and deploy the data
management and operational policies of their
organizations, all by themselves. The functioning of
the Autonomic Data Management System (ADMS) at a
high level is shown in Figure 1. Here, the user
describes the policies at business object level using a

GUI and then these policies are converted into XML
using metadata that has information about mapping
between business objects and underlying data entities.
The policy XML is stored in a policy database. When
an event is detected (either database, temporal or
external), the relevant policies are fired and then
executed on the application databases.

2. Business Objects

The main impediment in the acceptance of any
policy based system is its usability. The policy
definition process has to be very intuitive for any
policy based system to get accepted. Business objects
are very good aids to visualize the real-world data.
They are much easier to work with than the tables of a
relational database (where enterprise data is stored).
Hence there is a need for a mapping between the
attributes and methods of the business object to the
relational database domain. Our system has a tool that

�����������	
���������
�����
����
�

������������

�

�
���

�����������	�

����

���
���
	����	

�������

��

	

��������

��

	

��������

��

������������

����

Figure 1: High level functioning of ADMS

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

www.manaraa.com

allows a domain expert to do this mapping. The
domain expert has to map the attributes of the business
object, which can be simple attributes, composite
attributes or aggregate attributes, to the relational
domain. The domain expert also has to map the
methods of the business objects which can be one of
event methods, condition methods or action methods,
to a set of operations on the relational tables. Once the
business objects have been abstracted out from a
domain, the policy maker can define the policies solely
in terms of the business objects. The policy maker does
not need to have any knowledge about database
administration practices; nor does he require
understanding of the complex database schema
underlying the applications.

3. ADMS Architecture

 The policy maker defines the policies at the business
object level using the Graphical User Interface (GUI)
provided by the system. The policies defined using the
GUI are passed on to the Policy Translator. This
module converts the business object level policy into
an XML based language, which is understood by the
Execution Engine. In this XML language, the policies
are explicitly defined in terms of the relational database
tables and events, i.e. it is no more at a business object
level.

 Since one business object may be constructed from
many data entities, the policy translator may convert a
policy defined at business objects into multiple policies
defined at data entities level and creates the
dependency between these policies that shows their
execution order. The policy is then passed on to the

Policy Validator module, which checks for errors and
inconsistencies in the policy, and for conflicts with
existing policies. Depending on the type of the policy,
the Policy Enforcement Engine, either defines triggers
on the database or defines alarms using the temporal
daemon [2, 3]. When the trigger (either database or
temporal alarm) fires, a notification is sent to the
Execution Engine which does event correlation and
fires the correct policy. The action is executed by the
Execution engine by issuing SQL/DML/DDL
statements on the underlying application databases.
 Our system supports features like deferred
condition/action evaluation, whereby the evaluation of
the condition/action can be deferred by some time after
the event/condition is checked. Some of the sample
policies that our system can support are given below:

1. On every Sunday at 7:00 AM, archive all customer
orders, which have been processed fully and for
which payment has been received.

2. If a supplier stops supplying a part, then delete all
those transaction items involving that part, if the
transaction cost is less than $50.

4. Conclusion

One of the main concerns of any industry is to
manage system behavior and information repositories
automatically, especially when the size of information
repository is increasing and there is a shortage of
skilled database administrators. In this paper we have
presented a policy framework based on active
functionality that can help to externalize rules for
autonomic data administration. Using our framework
the DBA can define policies using business objects and
does not have to worry about the intricacies of data
management like definition of triggers, execution of
periodic actions etc.

5. References

1. H.V. Jagadish, A.O. Mendelzon, and I.S. Mumick,
`Managing Conflicts between Rules’, 15th ACM
International Conference on Principles of Database
Systems, Montreal, 1996, pp 192-201.

2. A. Gupta, M. Bhide, M. Mohania, ‘Towards Bringing
Database Management Task in the Realm of IT non-
Experts’, In Proceedings of 19th International
Conference on Data Engineering, India, March 2003.

3. A. Gupta, M. Bhide, S. Pandey, and M. Mohania,
‘Event Based Access Control: A Demonstration’, In
Proceedings of 19th International Conference on Data
Engineering, Bangalore, India, March 2003.

GUI

Security
Manager

Policy
Translator

Policy
Validator

Policy
Enforcement

Engine

Temporal
Daemon

Execution
Engine

JDBC/ODBC Layer

DB DB

Figure 2: Architecture of ADMS

Proceedings of the International Conference on Autonomic Computing (ICAC’04)

0-7695-2114-2/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

